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The “Big Ideas in School Mathematics” (BISM) is a Research Project funded by the Ministry of 
Education, Singapore, and administered through the Office of Educational Research, National 
Institute of Education, Nanyang Technological University. The project began in 2020 and its aim is 
to investigate various areas in relation to teaching towards mathematical Big Ideas in Singapore 
schools. The study has currency in so far as “Big Ideas” were introduced in the latest Syllabus 
Revision by the Ministry of Education. There are three sub-studies in the project: the first is on the 
development of instruments to measure knowledge of BISM among primary- and secondary-level 
students and teachers; the second is on professional development work for secondary-level teachers 
on BISM; the third is similar to the second but for primary-level teachers. The papers in this 
symposium report information and findings on all these sub-studies. 

Overview of the Symposium Papers and Presenters 
Presenters: Associate Professor Leong Yew Hoong (Chair), Associate Professor Toh Tin Lam 

(Paper 1), Mr Mohamed Jahabar Jahangeer (Paper 2), Assistant Professor Choy Ban Heng (Paper 
3), Professor Berinderjeet Kaur (Paper 4) 

Paper 1: Overview of the research project on Big Ideas in School Mathematics 
Authors: Toh Tin Lam, Tay Eng Guan, Berinderjeet Kaur, Leong Yew Hoong, Tong Cherng 

Luen 
This paper provides a brief overview of the entire research project and the component sub-

studies. 
Paper 2: Assessment of Big Ideas in School Mathematics: Exploring an Aggregated Approach 
Authors: Mohamed Jahabar Jahangeer, Toh Tin Lam, Tay Eng Guan, Tong Cherng Luen 
This paper reports on developments under Sub-study 1. An item from the student BISM 

instrument will be discussed. It argues for the use of an “aggregated approach” in considering the 
scores of the student responses. 

Paper 3: From Inert Knowledge to Usable Knowledge: Noticing Affordances in Tasks Used for 
Teaching Towards Big Ideas About Proportionality 

Authors: Choy Ban Heng, Yeo Boon Wooi Joseph, Leong Yew Hoong 
This paper reports on developments under Sub-study 2. Part of the professional development 

under this project involved teachers designing their own instructional materials to foreground a 
targeted Big Idea. Snippets of tasks in these instructional materials will be discussed. 

Paper 4: Primary School Teachers Solving Mathematical Tasks Involving the Big Idea of 
Equivalence 

Authors: Berinderjeet Kaur, Tong Cherng Luen, Mohamed Jahabar Jahangeer 
This paper reports on developments under Sub-study 3. An item from the teacher BISM 

instrument will be discussed. Some data on teachers’ responses to the item will be shared. There are 
thus implications to teacher professional development on the Big Idea of Equivalence.  
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Big Ideas in school mathematics can be seen as overarching concepts that occur in various mathematical 

topics in a syllabus. Although there has been much interest recently in the understanding of Big Ideas, 

there is little research done in the assessment of Big Ideas thinking. In this paper, we discuss our research 

on Big Ideas in School Mathematics. The study consists of three sub-studies: the first sub-study on 

developing an instrument to measure Big Ideas; two sub-studies on measuring students’ and teachers’ Big 

Ideas at test-points before and after a professional development on Big Ideas for primary and secondary 

school teachers and students. 

In the recent mathematics curriculum revision conducted by the Singapore Ministry of Education 
(MOE), there is a new emphasis on the disciplinarity of mathematics and Big Ideas that are central 
to the discipline so as to bring coherence and connections between different topics. The objective of 
this new emphasis is to develop in students a deeper and more robust understanding of mathematics 
and better appreciation of mathematics (MOE, 2018; MOE, 2019). Each Big Idea connects various 
concepts and understanding across topics, strands and levels. 

 The definition of a Big Idea was proposed by Charles (2005) as “a statement of an idea that is 
central to the learning of mathematics, one that links numerous mathematical understandings into a 
coherent whole” (p.10). Prior to Charles’ definition, the notion of Big Ideas in mathematics 
education became prominent when it was highlighted by the National Council of Teachers in 
Mathematics (NCTM) in 2000 that “[t]eachers need to understand the Big Ideas of mathematics and 
be able to represent mathematics as a coherent and connected enterprise. Their decisions and their 
actions in the classroom—all of which affect how well their students learn mathematics—should be 
based on this knowledge.” (p. 17). 

From our collective classroom experience, the presentation in school mathematics syllabuses as 
discrete strands and topics could have led teachers and students to view mathematics as a collection 
of topics with weak connections. Thus, Big Ideas illuminate the interconnectedness between topics 
across strands and this aids the robustness of understanding mathematics. The depth of 
understanding is dependent on the number and strength of the connections (Hiebert & Carpenter, 
1992, p. 67). 

Challenges in Teaching for and Measuring Big Ideas 
Researchers have affirmed the existence of real challenges in the mathematics classroom for 

teaching Big Ideas in schools from both teachers’ and students’ perspectives (e.g., Hsu, Kysh, 
Ramage & Resek, 2007; Askew, 2013; Schoenfeld, 2019). Teachers in schools may not possess the 
relevant content knowledge pertaining to Big Ideas in mathematics. Lack of such knowledge is 
manifested in their teaching, for example, in their inability to realize that the generation of the 
exponent rules is traceable to the definition for positive integral exponents and that the distributive 



Big ideas in school mathematics 

41 

property is a Big Idea understanding for combining like terms and multiplying binomials (Hsu, 
Ramage & Resek, 2007). 

Their deficiency of such knowledge often translates into their lack of explicit attention to Big 
Ideas underpinning mathematics taught in schools. Consequently, this results in students’ acquisition 
of compartmentalized mathematical content knowledge (Askew, 2013). Lack of appropriate 
professional development for teachers associated with Big Ideas in mathematics, coupled with lack 
of time for professional development add to the challenges of teaching for Big Ideas (Hsu, Ramage 
& Resek, 2007; Askew, 2013). 

To date, there has been little research on the assessment of Big Ideas. This could be attributed 
to three major reasons: firstly, researchers have different classifications of Big Ideas (e.g., Charles, 
2005; Niemi et al., 2006; Singapore Ministry of Education, 2018, 2019). Secondly, the lack of clarity 
on the intent of the assessment. Furthermore, any additional instrument to measure Big Idea would 
mean an additional load to the already heavy high-stake national examinations. Thirdly, it is difficult 
to create items that assess thinking which link numerous mathematical understandings that cut across 
topics. 

Conceptualization of the Research Project Big Ideas in School Mathematics 
In addressing the challenges of teaching and measuring Big Ideas, a team of researchers (the 

authors of the papers in this symposium) conceptualized a research project Big Ideas in School 
Mathematics (BISM). Broadly, the aim of BISM is twofold: firstly, to develop assessment items to 
measure of Big Ideas in school mathematics for assessing how teachers and students connect 
numerous mathematical understandings into a coherent whole over multiple points of their 
respective developments. To date, there is a dearth of such an instrument. The second aim is to study 
the development of Primary and Secondary mathematics teachers’ and students’ knowledge of 
BISM across a period of time during which teachers participate in professional development about 
BISM. The research project consisted of three sub-studies: (1) Measures of Big Ideas in School 
Mathematics (BISM Measures); (2) Big Ideas in Secondary School Mathematics; and (3) Big Ideas 
in Primary School Mathematics. 

Sub-study 1: Measures of Big Ideas in School Mathematics. This sub-study involved the 
development of instruments for use in sub-studies (2) and (3). The aim of this sub-study was to 
develop, pilot and validate instruments to measure the knowledge of Big Ideas in School 
Mathematics (BISM) for primary / secondary school teachers and students. 

Initially, we studied the few existing instrument for the measure of Big Ideas by Niemi et al. 
(2006). Their items consist of three main types of tasks to measure Big Ideas in mathematics: basic 
computation tasks, partially-worked problems (with or without explanations), and explanation tasks. 
Basic computation tasks aim to assess whether students could recognize tasks representing specific 
Big Ideas. They could then apply the relevant Big Ideas and successfully complete the task. The 
designed tasks are simple and well-defined. Partially worked problems require students to fill in one 
to three boxes for missing numbers or symbols in the problem solution, or fill in a complete problem 
solving step. For an explanation task, a fully worked example is given before those partially worked 
examples. The selected worked example usually involves no more than 3 to 4 steps, and the fully 
worked examples are from similar mathematics topics but not the same topic used for assessment. 
The explanation tasks are based on partially worked examples with justifications. Students, in this 
case, need to understand the steps solved by others, and must be able to provide the principles for 
one of the steps. Just like the partially worked example tasks, the explanation tasks follow a fully 
worked example which covers a similar topic but not the same topic for real assessment. 

Our approach to the assessment of Big Ideas draws on the PISA experience of assessing 
mathematical literacy (Stacey & Turner, 2015) in general and in Tout and Spithill’s (2015) writing 
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of items to test mathematical literacy in particular. Our overarching principle in the development 
and validation of items or tasks is fitness-for-purpose because because the notion of Big Ideas can 
be contentious at its boundaries. Also, we expected the conceptualisation of Big Ideas to be complex 
and cut across school mathematics content. As such, the assessment items must be accessible to 
students and teachers. In addition, all the assessment items are designed for computer-based testing. 
For details about the instrument, refer to Jahangeer et al. (2023), which occurs as a research paper 
in this conference proceeding. 

In this study, we focused on two Big Ideas Equivalence and Proportionality. Each item, 
consisting of five parts, tests on only one of the two Big Ideas. Part 1 to Part 3 each consists of a 
selected response question focusing on the same Big Idea and are from the same topic. To facilitate 
thinking beyond topical content and procedural knowledge, Part 4 seeks to assist participants to look 
for the link connecting the three parts. Part 4 also seeks to trigger students’ Big Idea concepts, if 
any. The participants then attempt Part 5, a question that focuses on the same Big Idea but based on 
a different topic. Part 5 assessed the participant’s ability to transfer the knowledge of Big Idea across 
a different topic. We also rode on the affordance of this sub-study to address the real issue of 
assessment fatigue among students. This is our attempt to balance between maintaining the validity 
of the instrument (students must answer sufficiently many types of problems); and not over-testing 
the students (to avoid assessment fatigue of students, aligned to the increasing emphasis on the 
mental well-beings of students). This will be reported in Paper 2. 

Sub-study 2: Big Ideas in Secondary School Mathematics. This sub-study aimed to study the 
trajectory growth in (a) secondary school teachers’ knowledge of BISM in relation to their 
involvement in professional development related to BISM; and (b) lower secondary school students’ 
knowledge of BISM through their two years’ schooling at the lower secondary level. The findings 
we have obtained so far for this sub-study is presented in Paper 3. 

Sub-study 3: Big Ideas in Primary School Mathematics. This sub-study is an analogue of Sub-
study 2, with the focus on primary school mathematics teachers and upper primary students at 
Primary 5 and Primary 6. The findings we have obtained so far for this sub-study is presented in 
Paper 4. 

The instrument developed in sub-study 1 was administered to the teacher and student participants 
in sub-studies 2 and 3 at various chronological points between the two years’ schooling. The first 
test-point, administered prior to the commencement of the teachers’ professional development, 
provided the baseline information on the state of the teachers’ knowledge of BISM prior to formal 
participation in professional development, and the students’ knowledge of BISM prior to their 
teachers being officially cognizant of BISM. It also guided the researchers in designing the 
professional development interventions for the participating teachers. 

Conclusion 
This study will inform how teachers understand the rationale for teaching towards Big Ideas, 

their belief and appreciation in the value to teach towards Big Ideas, and how these are translated 
into their teaching practices in their efforts to develop in students a greater awareness of the 
disciplinarity of mathematics, the ideas that are central to the discipline, and bring coherence and 
connection between different topics and across levels. In view of this, most importantly, the study 
will inform how students are able to better learn new mathematical knowledge with an appreciation 
of Mathematics as a discipline and its applications in the world. 
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Figure 1. The relation between the three sub-studies in BISM project. 
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In this paper we report our development of instruments to measure Big Ideas in school mathematics. In 

tackling the issue of assessment fatigue among students, we present an aggregated approach to measure 

students’ knowledge of Big Ideas. 

There has been little research done on how the knowledge and understanding of Big Ideas can 
be assessed. In one of the rare examples we could find, Niemi et al. (2006) suggested three main 
types of assessments to measure Big Ideas in mathematics: basic computation tasks, partially-
worked problems (with or without explanations), and explanation tasks. Charles’ (2005) definition 
of a Big Idea in Mathematics as “a statement of an idea that is central to the learning of mathematics, 
one that links numerous mathematical understandings into a coherent whole” (p.10) implies the need 
to contrast a task across more than one topic to be able to tease out the use of a Big Idea in the task. 
We followed this basic principle in constructing an instrument to assess Big Idea ‘ability’. An 
example of an item, consisting of five parts, on Equivalence is shown in Figure 1. We have piloted 
some of the items which we have constructed. The dimensionality of these items are reported in 
Jahangeer et al. (2023), a separate paper in this conference. An important consequence from a Rasch 
analysis was that we could only use Part 5 as a reliable measure of Big Idea ‘ability’ since within an 
item, Parts 1 to 3 violate the item independence requirement of a Rasch scale. 

Assessment Fatigue 
Assessment has always been an integral part of teaching and learning. Analysis of assessment 

performance is used for a variety of purposes including placement, selection and certification. In 
many countries, standardised and high stakes assessments are put in place at milestone grades to 
determine placement and selection of students to the next course of their education. Well-designed 
assessment tools and analysis can provide accurate information regarding student learning. 

Inaccuracies or deviations from what students have mastered could have been contributed by the 
students themselves. In particular, the cognitive demand required on students may contribute to them 
experiencing cognitive fatigue, which naturally affects their overall performance. According to 
Ackerman and Kanfer (2009), “[a]nticipations of subjective fatigue may lead some individuals to 
avoid tasks altogether” (p. 176). The duration of an assessment may result in unwilling students not 
committed to performing to the best of their abilities, affecting the validity of the responses. Thus, 
a balance between the reliability and validity of the assessment and the duration of assessment 
without causing a negative anticipation of cognitive fatigue, is an area of worthwhile concern for 
educators and researchers. 

Returning to our attempt to assess Big Idea ‘ability’, the same consideration of duration of 
assessment in relation to test validity and reliability arises. Each item of ours necessarily consists of 
parts to enable a Big Idea to surface across different topics. However, just two items would require 
at least 30 minutes. A valid Rasch scale would require at least six items to cover a significant range 
of ability. We derived this based on Andrich’s work which, when describing the invariance of 
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appropriate comparison on measures using the Rasch model, used a six-item questionnaire for an 
example (Andrich, 1988, p. 22). 

 

Figure 1. An item comprising 5 parts. 

An Aggregated Solution 
We base our solution to the conundrum on the methodology and raison d’etre of sampling, i.e., 

to understand a population, there is no need for every student to complete the entire instrument. For 
example, the Programme for International Student Assessment (PISA) carried out international 
standardized testing every three years across various domains. Each domain consists of items which 
are subdivided into smaller blocks and each student involved in the assessment will be given a 
booklet made up of a few blocks. PISA made use of ‘plausible values’ to determine a student’s 
performance and to give a population score instead of an individual score. The successful 
computation of plausible values, however, requires a deeper knowledge of mathematics which is not 
accessible to educators, generally. We are proposing a simpler structure that is mathematically easier 
and can be implemented by educators in schools. 

We propose an aggregated structure which involves the creation of a ‘Super-Student’ (SS). Each 
SS is made up of four students of similar ability in Mathematics. A random grouping of students to 
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form a SS will likely confound the results—a strong student in the grouping could have solved a 
difficult item and a weaker student in the grouping could not solve an easy item assigned. Thus, the 
SS would be invalid due to the misfit in responses. Although no study has been done to assess the 
correlation between mathematics ability and big idea thinking, Schoenfeld (2019) mentioned in his 
study that high performing individuals are able to see and use Big Ideas in problem solving. We thus 
make a reasonable assumption that students of similar ability may have the same level of Big Idea 
thinking. In this light, we propose to constitute an SS, with all four students having identical ability 
(ideally but impossible in practice), by rank ordering students based on their past semestral 
assessment marks as a proxy of their mathematical ability. Going down the list, every four students 
are grouped into an SS and given a new SS ID. For example, in a school of 320 students, the top 
four students will constitute SS01, the next four SS02 and the last four students in the ordered list 
will be SS80. Triangulation can be carried out with teachers to validate that the students grouped 
together are indeed of similar ability. To differentiate the students within each SS, a suffix is added, 
e.g., SS01a, SS01b, SS01c and SS01d for the four students that constitute SS01. This is done to 
facilitate the correct distribution of the items. 

We envisage a final instrument for a Big Idea consisting of eight items (each with five parts). 
The eight items are split into eight testlets, T1 to T8 as shown in Table 1. Each testlet is only made 
up of two items and each student attempts only one of the testlets. Table 1 shows how the testlets 
are distributed to the students as well as to each SS. Since each testlet has only two complete items, 
it can be administered easily within a much shorter duration and will reduce cognitive fatigue. 
Table 1 

Matrix Distribution of Items to Two SS Comprising a Total of Eight Students 
 

T1  T2 T3 T4 T5 T6 T7 T8 

I1 SS01a 
      

SS02d 

I2 SS01a SS02a 
      

I3 
 

SS02a SS01b 
     

I4 
  

SS01b SS02b 
    

I5 
   

SS02b SS01c 
   

I6 
    

SS01c SS02c 
  

I7 
     

SS02c SS01d 
 

I8 
      

SS01d SS02d 

As a result of the SS structure and distribution of testlets, each SS will have taken the entire set 
of items while each student only attempts two items. Thus, the duration required to complete the test 
is only 25% of the time required to complete all the eight items. The score collated will be for each 
SS instead of for every student in the school. This SS structure can be used not only in obtaining an 
aggregated score for assessing group performance on an instrument, but it can also be used for 
validating an instrument during its initial item creation stage. 
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Conclusion 
While assessments are important to monitor learning, too many high stakes assessments will 

reduce available time for teaching, erode the joy of learning and cause a high level of worry and 
stress about exams and results. However, assessment remains crucial to monitor if learning has taken 
place and is an important feedback mechanism to improve teaching as well as learning. In place of 
high stakes assessments, an aggregated structure as proposed may gather sufficient information 
regarding learning without increasing student cognitive load nor take up too much precious 
curriculum time. This may be a worthwhile contribution towards the joy of learning. 

One of the main issues that arise from the SS structure is the validity of the SS itself. How similar 
are the four students within each SS? With no prior research done on the relationship between math 
ability and Big Idea thinking, it is difficult to validate the structure we have proposed. At this 
juncture, we have piloted the items and the SS structure is due to be tested and analysed later. We 
intend to explore and analyse the performance of the SS using two different approaches. 

The first approach is to study the misfit of SS scores using Rasch analysis. In the development 
of the instrument, the items would be calibrated and validated using Rasch model. Using the same 
Rasch model analysis, we will be able to do a fit analysis by looking at person (SS) misfit 
information, if any. In the event of any person misfit cases, we hope that the misfit is due to the 
individual students doing the two items erratically, and not caused by the different students within 
the SS, e.g., the misfit is due to SS01a getting items with higher difficulty correctly while SS01c 
answering items with lower difficulty incorrectly. The second approach is by comparing a super-
student score against the scores of each of the four students forming the super-student structure 
based on plausible values created for each student. The technique to calculate the plausible values 
can be found in Von Davier et al. (2009). We will collect our data from July 2023 and report the 
results thereafter. 
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Teaching towards big ideas provide opportunities for teachers to think deeply about content and pedagogy 

in order to support their students to see connections in mathematics. However, teachers may not always 

activate or mobilise their knowledge in classroom situations. This paper looks into how a teacher, Peter, 

think about the tasks in his instructional materials he crafted to uncover what he may notice about the 

affordances of the tasks for teaching proportionality. 

Teaching towards big ideas, a recent initiative included in the 2020 Singapore Mathematics 
Syllabus (Ministry of Education-Singapore, 2019), provides opportunities for teachers to think more 
deeply about what and how they teach in order to support their students to see connections in 
mathematics (Choy, 2019). Doing this requires teachers to pay attention to the mathematics 
embedded in the curriculum, discern the details of the big ideas, and perceive the affordances in 
tasks for bringing out these ideas (Choy, 2019). A key enabler is the mathematical knowledge for 
teaching (Ball et al., 2008) that teachers can activate during classroom instruction. This suggests a 
key distinction between inert knowledge (Renkl et al., 2010) and usable knowledge, or what they 
mobilise during teaching. Kersting et al. (2012) hypothesized that “teachers with more usable 
knowledge are able to apply that knowledge to the design and improvement of instruction in their 
classrooms” (p. 573). Furthermore, as Choy and Dindyal (2021) had pointed out, it is not trivial for 
teachers to notice the affordances of tasks and harness them to improve instruction. Here, we explore 
how teachers can be supported, through professional learning (PL) sessions, to transform their inert 
knowledge into usable knowledge through the discussion and design of instructional materials. This 
paper is guided by the following research question:  

• How does a PL session that focuses on the design of instructional materials activate his inert 
knowledge of a big idea in mathematics? 

Contexts and Methods 
The six teacher participants in the study reported here is part of a larger project on “Big Ideas in 

School Mathematics”, which focused on the notion of teaching towards big ideas in Singapore. 
These six teachers participated in a series of professional learning (PL) sessions to unpack big ideas 
about proportionality (Yeo, 2019) so that they can design instructional materials and lessons for 
teaching the topic of ratio and rates in Secondary One. In the first session, the second author 
discussed the idea of proportionality from a few perspectives: when one quantity is multiplied by n, 
the other quantity is also multiplied by n (which we will call proportional reasoning), the equality 
of two ratios (e.g. !!!" =

"!
""

 for direct proportion), the rate !" is constant for direct proportion, and the 
product xy is constant for inverse proportion. Two main approaches to solving problems involving 
proportionality were shared: proportional reasoning via the unitary method and using the constant 
rate !" directly. In the next two sessions, the second and third authors facilitated discussions on the 
use of these two approaches, as well as others (Weinberg, 2002), to solve problems involving 
constant rates and supported the teachers in thinking about the design of instructional materials to 
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incorporate proportionality in questions involving ratio, percentage, currency exchange and speed. 
Of interest in this paper is the instructional material shared by Peter (pseudonym), one of the 
teachers, during the fourth PL session, which was facilitated by the first author. Data collected 
include video and voice recordings of the PL session, and the draft instructional material designed 
by Peter. For this paper, the findings were generated from Peter’s sharing on his thinking behind the 
design of the instructional material used for teaching rate, as well as the interactions between him 
and the other teachers in the PL session. Analyses were guided by the following questions: 

• What knowledge on proportionality did Peter utilise in his design? 
• What inert knowledge on proportionality did Peter activate during the PL session? 

Three Short Snippets of Peter’s Thinking 
In this section, we begin by describing three short snippets of Peter’s thinking, juxtaposed with 

what the other teachers said in response to the questions or prompts by the first author (BH). We 
then unpack Peter’s thinking behind his design or choice of tasks put into instructional material 
before we characterise his understanding of proportionality in terms of what he knew inertly (Renkl 
et al., 2010) and what he was able to access and use—usable knowledge (Kersting et al., 2012)—
through his interactions during the PL session. 

Snippet 1: Shampoo Investigation Task 

Peter began by describing the investigation task he placed at the beginning of the instructional 
material (see Figure 1). He had wanted the students to rely on their intuition and explain how they 
solve the problem before teaching them about the concept of rate. 

 

Figure 1. Shampoo problem. 

When asked about how students might respond to the task, Peter responded that “some of them 
might choose to ignore the idea of same volume and just superficially choose the cheapest” [38:26]. 
Teacher M then shared that “they would use the unitary method” to obtain the cost of shampoo for 
100 mL and subsequently 1 mL [38:52]. With more prompting, Peter highlighted that students could 
“change the volume to 2 litres” [39: 47] and compare. Teacher N also offered a similar size-change 
strategy (Weinberg, 2002) by changing the price to $30. Building on this discussion, the first author 
highlighted that these different methods (without using rate explicitly) were all based on the 
overarching idea of proportionality. 
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Snippet 2: Fastest Typist Problem 

After the investigative task, Peter defined rate as “a quantity per (one) unit of another quantity” 
and selected a series of tasks, meant for students to compute rates in his instructional material. One 
such task is given as follows: Jayden can type 720 words in 6 minutes, Ithiel can type 828 words in 
18 minutes and Zhi Rui can type 798 words in 19 minutes. Who is the fastest typist? 

Peter had intended the task to be used merely for computation. At this juncture, the first author 
highlighted the possibility of “looking more closely at the numbers used” and modify the numbers 
to bring out the idea of proportionality more explicitly. The first author suggested Peter to consider 
how the numbers can be changed to provide opportunities for students to exercise their proportional 
reasoning. In addition, he highlighted to Peter that the current set of numbers did not require students 
to do deliberate calculation using “proportional reasoning”; instead, students would just need to 
mentally estimate that Jayden has to be the fastest typist because he could type around 700 words 
within 6 minutes, as compared to what the other two could type in a much longer time (18 or 19 
minutes). Of course, students could have multiplied 720 by 3 (proportional reasoning) to compare 
Jayden’s typing speed against the other two. Through the discussion, Peter became aware of how 
the item could be used to emphasise different aspects of proportionality. 

Snippet 3: Exchange Rate Problem 

The rest of the instructional material focused on providing opportunities for students to calculate 
per (one) unit rates instead of looking out for opportunities to highlight the “power of 
proportionality” to make sense of comparisons between two quantities. For instance, Peter went 
through Example 2 (See Figure 2) as merely computational without noticing the alternative solution 
to part (b) of the question. When the first author prompted the teachers to look more closely at the 
answer to part (b), Peter realised that students could simply divide 1256 SGD (given in the stem of 
the question) by 10 using the idea of proportionality. 

 

Figure 2. Exchange rate problem. 
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Discussion 
Taken together, the three snippets detailed in this short paper suggest that while Peter and the 

other teachers were aware of the ideas of proportionality (as seen in Snippet 1), he might not always 
be able to notice these ideas and harness the affordances of the tasks embedded in the instructional 
materials he had designed (Choy & Dindyal, 2021). As seen from the three snippets, he was able to 
articulate the knowledge about teaching proportionality, especially the idea of providing 
opportunities for students to reason proportionally using different solution strategies (Weinberg, 
2002). Yet, he did not always notice affordances of these tasks to bring out the idea of proportionality 
and instead focused on emphasising a fixed way of finding rate and solving missing value questions. 
In other words, it is not trivial for teachers to activate their inert knowledge about teaching 
proportionality to generate usable knowledge that can potentially enhance students’ understanding 
of this big idea when designing instruction materials. What matters is not simply what the teachers 
know, but how they can learn to mobilise their knowledge in actual classroom situations (Ball et al., 
2008; Kersting et al., 2012). 

These snippets not only highlight the complex and perennial issue of knowledge activation in 
the act of teaching but also provide insights into how professional learning activities can be 
structured to support teachers to bridge the gap between their knowledge and classroom practice. 
First, such professional learning can be structured around discussion of lessons and more 
specifically, the design of instructional materials. Designing lesson materials provide an avenue for 
teachers to transform their knowledge into something usable, and hence enhance the possibility of 
them mobilising their inert knowledge. Second, we see the need for teachers to learn to notice 
affordances for using tasks and other instructional materials because doing this provides 
opportunities for teachers to generate new possibilities that can potentially change practices. Lastly, 
the role of a knowledge facilitator to support teachers to notice new possibilities in their design of 
instructional materials, in the context of professional learning sessions, should not be under-
estimated. How such sessions could be facilitated remains under-studied and could be a fruitful area 
for future research. 
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The primary school mathematics syllabuses in Singapore as of the year 2020 reinforces that Big ideas are 

central to the learning of mathematics. In support of the push to teach for big ideas, a research study is 

presently underway. A part of it is on the professional development (PD) of primary school mathematics 

teachers. As part of the PD teachers attempted a mathematical task as measure of the big idea, 

Equivalence, in an online environment at the start of their PD. Data from the task show that teachers, were 

generally not cognisant of the big idea of equivalence when solving the task. They were also unable to 

distinguish between a heuristic (diagrams) and a mathematical idea about relationships, specifically 

equivalence as in the mathematical task. 

The revised school mathematics curriculum, in Singapore, as of 2021 has placed emphasis on 
learning mathematics as a body of connected knowledge (Ministry of Education, 2019). Four 
themes, namely properties and relationships, representations and communications, operations and 
algorithms, and abstractions and applications together with six big ideas have been emphasised for 
the teaching of mathematics in primary schools. A “big idea is a statement of an idea that is central 
to the learning of mathematics, one that links numerous mathematical understandings into a coherent 
whole” (Charles, 2005, p. 10). The six big ideas are diagrams, equivalence, invariance, measures, 
notations, and proportionality. A research study, Big Ideas in School Mathematics (BISM) is 
presently underway in Singapore and a part of it is on professional development (PD) of primary 
school mathematics teachers related to the enactment of Big Ideas in their mathematics instruction. 
Research has documented that teachers’ lack of relevant content knowledge of Big Ideas in 
mathematics translates into their lack of explicit attention to Big Ideas underpinning mathematics 
taught in schools and results in developing isolated compartments of mathematical knowledge in 
their students (Askew, 2013). The study reported in this paper draws on part of the data from the 
BISM project. It attempts to uncover if teachers drew on the big idea of equivalence when solving 
mathematical tasks that encompass equivalent relationships at the beginning of their PD. 

The Study 
Participants and Instrument 

All the mathematics teachers in two primary schools, P1 and P2, participated in the PD (see 
Kaur et al. 2021; 2022). The PD was spread over two years. In the first year 24 teachers from school 
P1 and 32 teachers from school P2 and in the second year 23 teachers from school P1 and 33 teachers 
from school P2 participated in the PD. Due to teacher movement in and out of schools, in the second 
year there was one less teacher in school P1 and one more teacher in school P2. 

Each year during the first session of the PD teachers attempted a set of three mathematical tasks 
in an online computer environment. These tasks were part of a collection of tasks that were being 
put together as measures of two big ideas, namely equivalence and proportionality. In the first-year 
teachers attempted 2 tasks on proportionality and 1 on equivalence, and in the second year they 
attempted 1 task on proportionality and 2 tasks on equivalence. We limit the data in this paper to the 
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item on equivalence that teachers in School P1 attempted during the first session of their PD in the 
first year. 

Figure 1 shows the equivalence task the teachers attempted in the first session of their first year. 
The task had 5 parts. Parts 1, 2 and 3 were tasks independent of each other that involved geometrical 
shapes and measurement. Similar tasks are found in end of school examinations for primary 6 in 
Singapore schools. Part 4-1 prompted the teachers to review their solutions to Parts 1, 2 and 3 and 
reflect on any common idea they may have drawn on whilst working on their solutions. Part 4-2 
offered some options for teachers to consider about what may have guided their solutions in Parts 1, 
2 and 3. Part 5-1 was yet another task on geometry and measurement that teachers had to attempt. 
Following Part 5-1 was Part 5-2, where teachers were again asked to review their solutions for Parts 
1, 2, 3 and 5-1 and consider what may have guided their solution process. 

 

Figure 1. Example of mathematical task illuminating equivalence as a big idea. 
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Data and Discussion 

Table 1 shows the performance of 24 teachers from School 1 on the mathematical item shown 
in Figure 1. 
Table 1 

Performance of Teachers on Mathematical Task Shown in Figure 1 

Task Response  n (%)  

Part 1 36 cm2 (correct answer) 21 (87.5) 

Part 2 57 cm2 (correct answer) 18 (75.0) 

Part 3 21 cm (correct answer) 18 (75.0) 

Part 4-1 Others* 24 (100) 

Part 4-2 
 

I used diagrams for the parts. 
I used equivalence for the parts. 
I used guess and check for the parts. 
I used proportionality for the parts. 
Others (Please elaborate) 
Use algebra / Cut-outs and diagrams / Use algebra and 
part-whole relations 

7 (29.2) 
3 (12.5) 
2 (8.3) 
9 (37.5) 
3 (12.5) 

Part 5-1 Others (75 cm2–correct answer) 7 (29.2) 

Part 5-2 
 

In all these parts I used diagrams. 
In all these parts I used equivalence. 
In all these parts I used guess and check. 
In all these parts I used proportionality. 
Others (Please elaborate) 

7 (29.2) 
3 (12.5) 
2 (8.3) 

12 (50.0) 
 0 (0.0) 

*Responses of the teachers were coherent with Part 4-2. 

It is apparent from the data in Table 1 that at least 18 (75%) of the teachers managed to work 
through Parts 1, 2 and 3 of the task and arrive at the correct answer. 12 of them mentioned using 
diagrams, equivalence and part-whole relations as mathematical ideas in their solutions. To resolve 
Part 1, as shown in Figure 2, one may find the area of the shaded portion by finding the difference 
between the areas of rectangles with sides 16 cm by 12 cm and 13 cm by 12 cm. Similarly for Parts 
2 and 3, teachers may have ‘used diagrams’ to illuminate relationships. It appears that some teachers 
were using diagrams as a heuristic to illuminate a mathematical idea which many failed to name as 
equivalence. This may have been due to a lack of ‘vocabulary’ in their mathematics discourse. 

However, for Part 5-1 it appears that teachers were challenged when trying to construct a 
relationship using diagrams. The hint provided could have led them to make equations such as: 

• area of lighter region + area of overlap = 100 cm2 
• area of darker region + area of overlap = 25 cm2 

and observe a relationship, but many appear to have failed at it. It is not clear what teachers meant 
by ‘used proportionality’ in their responses to Parts 4-1, 4-2 and 5-2. As teachers were not 
interviewed about their responses to the parts of the task, we are unable to decipher what they meant 
by this. 
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Figure 2. Equivalent relationship of parts in Part 1 of task. 

Conclusion 
It is apparent from the teachers’ responses to the parts in Figure 1 that generally they were not 

cognisant of the big idea of equivalence which is stated as follows in the mathematics syllabus for 
primary schools (Ministry of Education, 2019, p. 15): 

Equivalence is a relationship that expresses the ‘equality’ of two mathematical objects that may be 

represented in two different forms. The conversion from one form to anther equivalent form is the basis of 

many manipulations for analysing, comparing, and finding solutions. In every statement about equivalence, 

there is a mathematical object (e.g. a number, an expression or an equation) and an equivalence criterion (e.g. 

value(s) or part-whole relationships). 

The findings of the study reported here were critical in shaping the following PD sessions as 
teachers’ lack of relevant knowledge of Big Ideas translates into their lack of explicit attention to 
them in their instruction (Askew, 2013). During the second session of the PD, teachers shared how 
they had attempted to resolve Parts 1, 2 3, and 5-1. The whole group discourse together with inputs 
from the experts (University professors) created a shared vocabulary for Big Ideas and specifically—
equivalence and how such an idea facilitated solutions of mathematical tasks similar to the ones in 
Figure 1 and others in the school mathematics curriculum. 
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